高三数学幂函数与二次函数的复习题

2025-05-02 03:35:04 分类:综合材料 下载本文

【导语】“儒丽予”通过精心收集,向本站投稿了7篇高三数学幂函数与二次函数的复习题,下面就是小编给大家带来的高三数学幂函数与二次函数的复习题,希望大家喜欢阅读!

篇1:高三数学幂函数与二次函数的复习题

关于高三数学幂函数与二次函数的复习题

形如y=xa(a为实数)的函数,即以底数为自变量,幂为因变量,指数为常量的函数称为幂函数,以下是高考数学复习幂函数与二次函数专题检测,请大家仔细进行检测。

一、选择题

1.(2013宝鸡模拟)已知m2,点(m-1,y1),(m,y2),(m+1,y3)都在二次函数y=x2-2x的图像上,则( )

(A)y1ca (B)ac

(C)cb (D)ab

6.设abc0,二次函数f(x)=ax2+bx+c的图像可能是( )

7.函数f(x)=ax2+(a-3)x+1在区间[-1,+)上是减少的,则实数a的取值范围是( )

(A)[-3,0)

(B)(-,-3]

(C)[-2,0]

(D)[-3,0]

8.(2013安庆模拟)设函数f(x)=若f(-4)=f(0),f(-2)=-2,则关于x的方程f(x)=x的解的个数是( )

(A)1

(B)2

(C)3

(D)4

9.(2013南昌模拟)设b0,二次函数y=ax2+bx+a2-1的图像为下列之一.

则a的值为( )

(A)1

(B)2

(C)-1

(D)-2

10.(能力挑战题)若不等式x2+ax+10对于一切x(0,]恒成立,则a的最小值是( )

(A)0

(B)2

(C)-1

(D)-3

二、填空题

11.若二次函数f(x)=(x+a)(bx+2a)(a,bR)是偶函数,且它的值域为(-,4],则该函数的解析式f(x)= .

12.(2013上饶模拟)已知关于x的方程x2+a|x|+a2-9=0只有一个实数解,则实数a的值为.

13.二次函数f(x)的.二次项系数为正,且对任意x恒有f(2+x)=f(2-x),若f(1-2x2)0,则实数a的取值范围是.

三、解答题

15.(能力挑战题)已知二次函数f(x)=ax2+bx(a,b为常数,且a0),满足条件f(1+x)=f(1-x),且方程f(x)=x有等根.

(1)求f(x)的解析式.

(2)是否存在实数m,n(m2,

1(,

由函数y=x在R上是减函数知((,

ab.

6.【解析】选D.对于选项A,C,都有abc0,故排除A,C.对于选项B,D,都有-0,即ab0,则当c0时,abc0.

7.【解析】选D.当a=0时,f(x)=-3x+1显然成立,

当a0时,需解得-30,

综上可得-30.

【误区警示】本题易忽视a=0这一情况而误选A,失误的原因是将关于x的函数误认为是二次函数.

8.【解析】选C.由f(-4)=f(0),f(-2)=-2得

f(x)=

当x0时,由f(x)=x得x2+4x+2=x,

解得x=-2或x=-1.

当x0时,由f(x)=x得x=2.

故关于x的方程f(x)=x的解的个数是3个.

9.【解析】选C.由b0知,二次函数对称轴不是y轴,结合二次函数的开口方向及对称轴位置,二次函数图像是第③个.从而a2-1=0且a0,a=-1.

10.【解析】选C.方法一:设g(a)=ax+x2+1,

∵x(0,],g(a)为增加的.

当x=时满足:a++10即可,解得a-.

方法二:由x2+ax+10得a-(x+)在x(0,]上恒成立,

令g(x)=-(x+),则知g(x)在(0,]上是增加的,

g(x)max=g()=-,a-.

11.【思路点拨】化简f(x),函数f(x)为偶函数,则一次项系数为0可求b.值域为(-,4],则最大值为4,可求2a2,即可求出解析式.

【解析】∵f(x)=(x+a)(bx+2a)=bx2+(2a+ab)x+2a2是偶函数,则其图像关于y轴对称.

2a+ab=0,b=-2或a=0(舍去).

f(x)=-2x2+2a2,又f(x)的值域为(-,4],

2a2=4,f(x)=-2x2+4.

答案:-2x2+4

12.【解析】设f(x)=x2+a|x|+a2-9,

则f(-x)=(-x)2+a|-x|+a2-9

=x2+a|x|+a2-9=f(x),

即函数f(x)是偶函数.

由题意知,f(0)=0,则a2-9=0,

a=3或a=-3,

经检验a=3符合题意,a=-3不合题意,故a=3.

答案:3

13.【思路点拨】由题意知二次函数的图像开口向上,且关于直线x=2对称,则距离对称轴越远,函数值越大,依此可转化为不等式问题.

【解析】由f(2+x)=f(2-x)知x=2为对称轴,由于二次项系数为正的二次函数中距对称轴越远函数值越大,|1-2x2-2||1+2x-x2-2|,

即|2x2+1||x2-2x+1|,

2x2+10的否定为:对于区间[0,1]内的任意一个x都有f(x)0.

解得a1或a-2.

二次函数在区间[0,1]内至少存在一个实数b,使f(b)0的实数a的取值范围是(-2,1).

答案:(-2,1)

15.【解析】(1)∵f(x)满足f(1+x)=f(1-x),

f(x)的图像关于直线x=1对称.

而二次函数f(x)的对称轴为x=-,

-=1 ①

又f(x)=x有等根,即ax2+(b-1)x=0有等根,

=(b-1)2=0 ②

由①②得b=1,a=-,f(x)=-x2+x.

(2)∵f(x)=-x2+x=-(x-1)2+.

如果存在满足要求的m,n,则必须3n,

n.

篇2:九年级数学二次函数复习题

九年级数学二次函数复习题

1.下列函数中,属于二次函数的是( )

A.y=2x+1 B.y=(x-1)2-x2 C.y=2x2-7 D.y=-1x2

2.函数y=(m-5)x2+x是二次函数的条件为( )

A.m为常数,且m≠0 B.m为常数,且m≠5

C.m为常数,且m=0 D.m可以为任何数

3.已知圆柱的高为14 cm,则圆柱的体积V(cm3)与底面半径r(cm)之间的函数表达式为( )

A.V=14r2 B.r=14πV C.V=14πr2 D.r=V14π

4.某厂今年一月份新产品的研发资金为a元,以后每月新产品的研发资金与上月相比增长率都是x,则该厂今年三月份新产品的研发资金y(元)关于x的函数表达式为( )

A.y=(1+x2) B.y=a(1+x) C.y=a(1+x2) D.y=a(1+x)2

5.用一根长为10 m的木条,做一个长方形的窗框,若长为x m,则该窗户的面积y(m2)与x(m)之间的函数表达式为 .

6.某商店从厂家以每件21元的价格购进一批商品,经过调查发现,若每件商品售价为x元,可卖出(350-10x)件商品.则所获得的利润y(元)与售价x(元)之间的函数表达式为 .

7.下列各式中,其中是二次函数的有( )

①y=x2+1;②y=1x2+1;

③y=(2x-3)(3x-2)-6x2;

④y=x2+x-1+1;

⑤y=x2+1;

⑥y=(x-1)(x+4).

A.1个 B.2个 C.3个 D.4个

8.下列函数关系中,不是二次函数的是( )

A.正方形面积S与边长x之间的关系

B.半圆的面积S与半径R之间的关系

C.正三角形的面积y与边长x之间的关系

D.长方形的面积是常数S,它的长y与宽x的关系

9.如图,在△ABC中,∠BAC=90°,AB=AC=1,点D是BC上一个动点(不与B,C重合),在AC上取一点E,使∠ADE=45°.设BD=x,AE=y,则y关于x的函数表达式为 .(不要求写出自变量x的取值范围)

10.已知二次函数y=x2-bx-2,当x=2时,y=-2,求当函数值y=1时,x的值.

11.已知两个变量x,y之间的表达式为y=(m+2)xm2+m-2x-2.

(1)当m为何值时,此函数是二次函数;

(2)当m为何值时,此函数是一次函数.

12.如图,某矩形相框长26 cm,宽20 cm,其四周相框边(图中阴影部分)的宽度相同,都是x cm,相框内部的面积(指图中较小矩形的面积)为y cm2.

(1)写出y与x的函数表达式;

(2)若相框内部的面积为280 cm2,求相框边的宽度.

13.某商人如果将进货单价为8元的商品按每件10元出售,每天可销售100件.现在他采用提高售价,减少进货量的办法增加利润,已知这种商品每提高1元,其销售量就要减少10件.若他将售价定为x元,每天所赚利润为y元.

(1)请你写出y与x之间的函数表达式;

(2)当利润等于360元时,求每件商品的售价.

14.如图,一面利用12 m的住房墙,另外三面利用22 m的建筑材料建成一个矩形花圃,其中有两个1 m宽的小门,设花圃的宽AB为x m,面积为S m2.

(1)求S与x的函数表达式及x的取值范围;

(2)如果要建成面积为45 m2的花圃,AB的长为多少米?

答案:

1---4 CBCD

5. y=-x2+5x

6. y=-10x2+560x-7350

7. B

8. D

9. y=x2-2x+1

10. 解:3或-1

11. (1) 解:m=1

(2) 解:m=-2或m=-1或m=-1±52

12. 解:(1)y=4x2-92x+520(0

13. 解:(1)x=-10x2+280x-1600(10≤x≤20) (2) 14元

14. 解:(1)S=-3x2+24x(4≤x<8) (2)5 m

篇3:中考数学:二次函数与图形变换

中考数学:二次函数与图形变换

天津五中 张欣(区级优秀教师)

二次函数是初中数学中最精彩的内容之一,也是历年中考的热点和难点。其中,关于函数解析式的确定是非常重要的题型。而今年的中考正是面临新课程改革,教材的内容和学习要求变化较大,其中一个突出的变化就是强化了对图形变换的要求,那么二次函数和图形变化的结合,将是同学们在学习中不可忽视的内容。

图形变换包含平移、轴对称、旋转、位似四种变换,那么二次函数的图像在其图形变化(平移、轴对称、旋转)的过程中,如何完成解析式的确定呢?解决此类问题的方法很多,关键在于解决问题的着眼点。笔者认为最好的方法是用顶点式的方法。因此解题时,先将二次函数解析式化为顶点式,确定其顶点坐标,再根据具体图形变换的特点,确定变化后新的顶点坐标及a值。

1、平移:二次函数图像经过平移变换不会改变图形的形状和开口方向,因此a值不变。顶点位置将会随着整个图像的平移而变化,因此只要按照点的移动规律,求出新的顶点坐标即可确定其解析式。

例1.将二次函数y=x2-2x-3的图像向上平移2个单位,再向右平移1个单位,得到的新的图像解析式为_____

分析:将y=x2-2x-3化为顶点式y=(x-1)2-4,a值为1,顶点坐标为(1,-4),将其图像向上平移2个单位,再向右平移1个单位,那么顶点也会相应移动,其坐标为(2,-2),由于平移不改变二次函数的图像的形状和开口方向,因此a值不变,故平移后的解析式为y=(x-2)2-2。

2、轴对称:此图形变换包括x轴对称和关于y轴对称两种方式。

二次函数图像关于x轴对称的图像,其形状不变,但开口方向相反,因此a值为原来的'相反数。顶点位置改变,只要根据关于x轴对称的点的坐标特征求出新的顶点坐标,即可确定其解析式。

二次函数图像关于y轴对称的图像,其形状和开口方向都不变,因此a值不变。但是顶点位置会改变,只要根据关于y轴对称的点的坐标特征求出新的顶点坐标,即可确定其解析式。

例2.求抛物线y=x2-2x-3关于x轴以及y轴对称的抛物线的解析式。

分析:y=x2-2x-3=(x-1)2-4,a值为1,其顶点坐标为(1,-4),若关于x轴对称,a值为-1,新的顶点坐标为(1,4),故解析式为y=-(x-1)2+4;若关于y轴对称,a值仍为1,新的顶点坐标为(-1,-4),因此解析式为y=(x+1)2-4。

3、旋转:主要是指以二次函数图像的顶点为旋转中心,旋转角为180°的图像变换,此类旋转,不会改变二次函数的图像形状,开口方向相反,因此a值会为原来的相反数,但顶点坐标不变,故很容易求其解析式。

例3.将抛物线y=x2-2x+3绕其顶点旋转180°,则所得的抛物线的函数解析式为________

分析:y=x2-2x+3=(x-1)2+2中,a值为1,顶点坐标为(1,2),抛物线绕其顶点旋转180°后,a值为-1,顶点坐标不变,故解析式为y=-(x-1)2+2。

以上内容只是向同学们提供了解决此类问题的一种思考方法和解题思路,同学们不妨试一试。

篇4:二次函数学复习题和练习题

二次函数学复习题和练习题

二次函数复习学案

一、导学提纲

1.根据下列表格的对应值,判断方程ax2+bx+c=0(a0)一个解x的取值范围 ( )

x 3.23 3.24 3.25 3.26

y=ax2+bx+c -0.06 -0.02 0.03 0.09

A. 3

2.函数图象y=ax2+(a-3)x+1与x轴只有一个交点,则a的值为( )

A.0,1 B.0,9 C.1,9 D.0,1,9

3.在平面直角坐标系中,如果抛物线y=2x2不动,而把x轴、y轴分别向上、向右平移2个单位,那么在新坐标系下抛物线的函数关系式是 ( )

A.y=2(x+2)2-2 B.y=2(x-2)2+2

C.y=2(x-2)2-2 D.y=2(x+2)2 +2

4.已知二次函数 ( )的图象如图所示,有下列结论:

① ;② ;③ ;④ .

其中,正确结论的个数是( )

A.1 B.2 C.3 D.4

5. 如图,用一段长为30米的篱笆围成一个一边靠墙(墙的长度不限)的矩形菜园ABCD,设AB边长为x米,则菜园的面积y(米2)与x(米)的关系式为

6.某涵洞是抛物线形,它的截面如图所示,现测得水面宽AB=1.6m,涵洞顶点O到水面的距离为2.4m,在图中直角坐标系内,涵洞所在抛物线的函数表达式是

7.某网店以每件60元的价格购进一批商品,若以单价80元销售,每月可售出300件,调查表明:单价每上涨1元,该商品每月的销量就减少10件.

(1)请写出每月销售该商品的利润y(元)与单价上涨x(元)件的函数关系式;

(2)单价定为多少元时,每月销售该商品的利润最大?最大利润为多少?

二、展示交流

1.如图是一个横断面为抛物线形状的拱桥,当水面在l时,拱顶(拱桥洞的最高点)离水面2m,水面宽4m.如图建立平面直角坐标系,求抛物线对应的关系式.

2. 如图,小明在一次高尔夫球争霸赛中,从山坡下O点打出一球向球洞A点飞去,球的飞行路线为抛物线,如果不考虑空气阻力,当球达到最大水平高度12米时,球移动的水平距离为9米.已知山坡OA与水平方向OC的夹角为30,O、A两点相距8 米.

(1)求出点A的坐标及直线OA的关系式;

(2)求出球的飞行路线所在抛物线的关系式;

(3)判断小明这一杆能否把高尔夫球从O点直接打入球洞A点?

3. 长江中下游地区发生了特大早情.为抗旱保丰收,某地政府制定了农户投资购买抗旱设备的补贴办法,其中购买Ⅰ型、Ⅱ型抗旱设备投资的金额与政府补的额度存在下表所示的函数对应关系.

型 号 Ⅰ型 Ⅱ型

投资金额x(万元) x 5 x 2 4

补贴金额y(万元)

2

2.4 3.2

(1)分别求y1和y2的函数关系式;

(2)有一农户同时对Ⅰ型、Ⅱ型两种设备共投资10万元购买,请你设计一个能获得最大补贴金额的方案,并求出按此方案能获得的最大补贴金额.

三、反馈练习

1. 对抛物线:y=-x2+2x-3而言,下列结论正确的是 ( )

A. 与x轴有两个交点 B. 开口向上

C. 与y轴的交点坐标是(0,3) D. 顶点坐标是(1,-2)

2. 若二次函数y=x2-6x+c的图象过A(-1,y1),B(2,y2),C(3+ ,y3),则y1,y2,y3的大小关系是 ( )

A . y1y3 B . y1y2 C . y2y3 D . y3y2

3.已知二次函数 中,其函数 与自变量 之间的部分对应值如下表所示:

0 1 2 3

5 2 1 2

点A( , )、B( , )在函数的图象上,则当 , 时, 与 的大小关系正确的是( )

A. B.

C. D.

4.在边长为6 cm的正方形中间剪去一个边长为x cm(x6)的小正方形,剩下的四方框形的面积为y,y与x之间的.函数关系是 .

5.有一个抛物线形拱桥,其最大高度为16米,跨度为40米,现把它的示意图放在如图所示的平面直角坐标系中,则此抛物线的关系式为 .

6.如图,已知等腰直角△ABC的直角边长与正方形MNPQ的边长均为20厘米,AC与MN在同一直线上,开始时点A与点N重合,让△ABC以每秒2厘米的速度向左运动,最终点A与点M重合,则重叠部分面积y(厘米2)与时间t(秒)之间的函数关系式为

7.一名男生推铅球,铅球行进高度y(单位:m)与水平距离x(单位:m)之间的关系是 y= ,铅球运行路线如图.

(1)求铅球推出的水平距离;

(2)通过计算说明铅球行进高度能否达到4m.

8.一玩具厂去年生产某种玩具,成本为10元/件,出厂价为12元/件,年销售量为2万件.今年计划通过适当增加成本来提高产品档次,以拓展市场.若今年这种玩具每件的成本比去年成本增加0.7x倍,今年这种玩具每件的出厂价比去年出厂价相应提高0.5x倍,则预计今年年销售量将比去年年销售量增加x倍(本题中0

(1)用含x的代数式表示,今年生产的这种玩具每件的成本为________元,今年生产的这种玩具每件的出厂价为_________元.

(2)求今年这种玩具的每件利润y元与x之间的函数关系式.

(3)设今年这种玩具的年销售利润为w万元,求当x为何值时,今年的年销售利润最大?最大年销售利润是多少万元?

注:年销售利润=(每件玩具的出厂价-每件玩具的成本)年销售量.

9. 如图,在Rt△ABC中,ACB=90,AC、BC的长为方程x2-14x+a=0的两根,且AC-BC=2,D为AB的中点.

(1)求a的值.

(2)动点P从点A出发,以每秒2个单位的速度,沿ADC的路线向点C运动;动点Q从点B出发,以每秒3个单位的速度,沿BC的路线向点C运动,且点Q每运动1秒,就停止2秒,然后再运动1秒若点P、Q同时出发,当其中有一点到达终点时整个运动随之结束.设运动时间为t秒.

①在整个运动过程中,设△PCQ的面积为S,试求S与t之间的函数关系式;并指出自变量t的取值范围;

②是否存在这样的t,使得△PCQ为直角三角形?若存在,请求出所有符合条件的t的值;若不存在,请说明理由.

篇5:初中数学一次方程、二次函数与不等式知识

等式与方程

1、等式:用等号把两个值相等的量或式子连接起来得到的式子称为等式。

2、方程:含有未知数的等式叫做方程。

注意:

(1)等式中必须含有等号,故不含等号的式子就不是等式;

(2)方程必须是等式,并且含有未知数,两个条件须同时具备;

(3)方程中可以含有几个未知数。

例题1、下列式子中,哪些是等式?哪些是方程?

(1)−1+7=6

(2)x+7=6

(3) x+7

(4)x+7=7−x

(5)4+7=7十4

(6)y3=1

(7)4x+y=7

方程中的项、系数、次数等概念

1、项:在方程中,被“+”、“-”,号隔开的每一部分(包括这部分前面的“十”、“-”号在内)称为一项。

2、未知数的系数:在一项中,写在未知数前面的数字或表示已知数的字母叫做未知数的系数。

3、项的次数:在一项中,所有未知数的指数和称为这一项的次数。

4、常数项:不含未知数的项,称为常数项。

列方程的方法

1、列方程:为了求得未知数,在未知数和已知数之间建立一种等量关系,就是列方程。

2、列方程可分两步进行:第一步先根据题设条件设未知数;第二步要找到未知数和已知数之间的等量关系,从而得到方程。

例题2、根据条件列方程:

(1)某数的平方与它的4倍互为相反数

(2)某数的相反数与8的差等于这个数的倒数

(3)购买一本书,打八折比打九折少花2元钱,求这本书的原价

例题3、根据下列条件列出方程:

(1)a与6两数和的平方等于1

(2)a与6两数平方的和等于1

方程的解

方程的解和解方程

方程的解:使方程的左右两边相等的未知数的值叫做方程的解

解方程:求方程的解的过程叫做解方程

注意:

(1)方程的解一定能使方程左右两边的值相等;

(2)方程的解和解方程是两个不同的概念,它们一个是求得的结果,一个是变形的过程,要区别开,方程的解中的“解”是名词,解方程概念中“解”是一个动词。

方程的解

一元一次方程的概念

1、概念:在一个方程中,只含有一个未知数,并且未知数的次数是一次的方程叫一元一次方程。如:x+7=7−x

2、一元一次方程的最简形式:ax=b(a≠0)

3、一元一次方程的标准形式: ax+b=0(a≠0)

注意:理解一元一次方程的概念应把握:

(1)是一个方程;

(2)只含有一个未知数;

(3)未知数的次数是1;

(4)化简后未知数的系数不能为0;

(5)分母不能含有未知数。

等式基本性质

1:等式两边同时加上(或减去)同一个数或同一个代数式,所得结果仍是等式。

2:等式两边同时乘以同一个数(或除以同一个不为零的数),所得结果仍是等式。

注意:

(1)运用等式基本性质1时,一定要注意等式两边同时加上<或减去)同一个数或同一个代数式,才能保证所得结果仍是等式,这里要特别注意“同时”和“同一个”;

(2)运用等式基本性质2时,除了要注意等式两边同时乘以(或除以)同一个数,才能保证所得结果仍是等式以外,还必须注意,等式两边不能都除以O,因为0不能作除数或分母;

(3)等式还有其他的一些性质,在解方程中也时常会用到,它们是:对称性:如果a=b,那么b=a.即等式的左、右两边交换位置,所得结果仍是等式。

传递性:如果a=b,且b=c,那么a=c。这条性质也叫做等量代换。

利用等式的基本性质解一元一次方程

1、求方程的解的过程叫做解方程

2、具体步骤如下:

(1)利用等式的性质解一元一次方程,一般是先利用等式性质1,然后再利用等式性质2,将ax=−b变形为x=−ba即可。

(2)移项法则:方程中的任何一项,都可以在改变符号后,从方程的一边移到另一边,这种变形叫做移项,这个法则称为移项法则,移项的根据是等式的基本性质1。

注意:

(1)移项时,不要忘记对移动的项变号,如从3+4x=7得到4x= 7+3,是错误的;

(2)没移项时,不要误以为有移项,如从−5=x,得到x= 5,这样的错误其原因在于对运用用等式的性质与移项的区别没有分清;

(3)去括号的方法:括号外的因数是正数,去括号后各项的符号不变,括号外的因数是负数,去括号后各项符号应变号;

(4)去分母:要去分母,我们首先要找准方程中的各分母,然后再利用等式性质2,在方程两边都乘以各分母的最小公倍数,即可达到去分母的目的。

篇6:初三数学实际问题与二次函数家庭作业摘抄

初三数学实际问题与二次函数家庭作业摘抄

1.已知 函数y= x2-x-12,当函数 y随x的增大而减小 时,x的取 值范围是( )

A. x<1 b=“” x=“”>1 C. x>- 4 D . -4

2.某商店购进一批单价为20元的日用商品,如果 以 单价30元销售,那么半月内可售出400件,根据销售经验, 提高销售单价会导致销售量的减少,即销售单价每提高1元,销售量相应减少20件, 如果提高售价,才 能在半月内获得最大利润?

3. 某地要建造一个圆 形喷水池,在水池中央垂直于水面安装一个花形柱子OA,O恰在水面中心,安置在柱子顶端A处的喷头向外喷水,水流在各个方向上沿形状相 同的`抛物线路 径落下,且在过OA的任一平面上,抛物线形状如图(1)所示.图(2)建立直角坐标系,水流喷出的高度y( 米)与水平距离x(米)之间的关系是 .请回答下列问题:

(1) 柱子OA的高度是多少米?

(2) 喷出的水流距水平面 的最大高度是多少 米 ?

(3) 若不计其他因素,水池的半径至少要多少米才能使喷出的水流不至于落在池外?

4.当运动中的汽车撞到物体时,汽车所受到的损坏程度可以用 “撞击影响”来衡量.某型汽车的撞击影响可以用公式I=2v 2来表示,其中v(千米/分)表示汽车的速度.

① 列表表示I与v的关系;

② 当汽车的速度扩大为原来的2倍时,撞击影响扩大为原来的多少倍 ?

5. 如图,正 方形EFGH的顶点在边长为a的正方形ABCD的边 上,若AE=x, 正方形EFGH的面积为y.

(1) 求出y与x之间的函数关系式;

(2) 正方形EFGH有没有最大面积?若有 ,试确定 E 点位置;若没有 ,说明理由.

篇7:初中数学一次方程、二次函数与不等式知识

等式与方程

1、等式:用等号把两个值相等的量或式子连接起来得到的式子称为等式。

2、方程:含有未知数的等式叫做方程。

注意:

(1)等式中必须含有等号,故不含等号的式子就不是等式;

(2)方程必须是等式,并且含有未知数,两个条件须同时具备;

(3)方程中可以含有几个未知数。

例题1、下列式子中,哪些是等式?哪些是方程?

(1)?1+7=6

(2)x+7=6

(3) x+7

(4)x+7=7?x

(5)4+7=7十4

(6)y3=1

(7)4x+y=7

方程中的项、系数、次数等概念

1、项:在方程中,被“+”、“-”,号隔开的每一部分(包括这部分前面的“十”、“-”号在内)称为一项。

2、未知数的系数:在一项中,写在未知数前面的数字或表示已知数的字母叫做未知数的系数。

3、项的次数:在一项中,所有未知数的指数和称为这一项的次数。

4、常数项:不含未知数的项,称为常数项。

列方程的方法

1、列方程:为了求得未知数,在未知数和已知数之间建立一种等量关系,就是列方程。

2、列方程可分两步进行:第一步先根据题设条件设未知数;第二步要找到未知数和已知数之间的等量关系,从而得到方程。

例题2、根据条件列方程:

(1)某数的平方与它的4倍互为相反数

(2)某数的相反数与8的差等于这个数的倒数

(3)购买一本书,打八折比打九折少花2元钱,求这本书的原价

例题3、根据下列条件列出方程:

(1)a与6两数和的平方等于1

(2)a与6两数平方的和等于1

方程的解和解方程

方程的解:使方程的左右两边相等的未知数的值叫做方程的解

解方程:求方程的解的过程叫做解方程

注意:

(1)方程的解一定能使方程左右两边的值相等;

(2)方程的解和解方程是两个不同的概念,它们一个是求得的结果,一个是变形的过程,要区别开,方程的解中的“解”是名词,解方程概念中“解”是一个动词。

一元一次方程的概念

1、概念:在一个方程中,只含有一个未知数,并且未知数的次数是一次的方程叫一元一次方程。如:x+7=7?x

2、一元一次方程的最简形式:ax=b(a≠0)

3、一元一次方程的标准形式: ax+b=0(a≠0)

注意:理解一元一次方程的概念应把握:

(1)是一个方程;

(2)只含有一个未知数;

(3)未知数的次数是1;

(4)化简后未知数的系数不能为0;

(5)分母不能含有未知数。

等式基本性质

1:等式两边同时加上(或减去)同一个数或同一个代数式,所得结果仍是等式。

2:等式两边同时乘以同一个数(或除以同一个不为零的数),所得结果仍是等式。

注意:

(1)运用等式基本性质1时,一定要注意等式两边同时加上<或减去)同一个数或同一个代数式,才能保证所得结果仍是等式,这里要特别注意“同时”和“同一个”;

(2)运用等式基本性质2时,除了要注意等式两边同时乘以(或除以)同一个数,才能保证所得结果仍是等式以外,还必须注意,等式两边不能都除以O,因为0不能作除数或分母;

(3)等式还有其他的一些性质,在解方程中也时常会用到,它们是:对称性:如果a=b,那么b=a.即等式的左、右两边交换位置,所得结果仍是等式。

传递性:如果a=b,且b=c,那么a=c。这条性质也叫做等量代换。

利用等式的基本性质解一元一次方程

1、求方程的解的过程叫做解方程

2、具体步骤如下:

(1)利用等式的性质解一元一次方程,一般是先利用等式性质1,然后再利用等式性质2,将ax=?b变形为x=?ba即可。

(2)移项法则:方程中的任何一项,都可以在改变符号后,从方程的一边移到另一边,这种变形叫做移项,这个法则称为移项法则,移项的根据是等式的基本性质1。

注意:

(1)移项时,不要忘记对移动的项变号,如从3+4x=7得到4x= 7+3,是错误的;

(2)没移项时,不要误以为有移项,如从?5=x,得到x= 5,这样的错误其原因在于对运用用等式的性质与移项的区别没有分清;

(3)去括号的方法:括号外的因数是正数,去括号后各项的符号不变,括号外的因数是负数,去括号后各项符号应变号;

(4)去分母:要去分母,我们首先要找准方程中的各分母,然后再利用等式性质2,在方程两边都乘以各分母的最小公倍数,即可达到去分母的目的。

初中函数有哪些

一次函数,二次函数,反比例函数,三角函数

一次函数:在某一个变化过程中,设有两个变量x和y,如果对于x的每一个确定的值,在y中都有唯一确定的值与其对应,那么我们就说y是x的函数,也就是说x是自变量,y是因变量。表示为y=kx+b(k≠0,k、b均为常数),当b=0时称y为x的正比例函数,正比例函数是一次函数中的特殊情况。可表示为y=kx,常数k叫做比例系数。

二次函数:一般的,形如y=ax^2+bx+c(a≠0)的函数叫二次函数。自变量(通常为x)和因变量(通常为y).右边是整式,且自变量的最高次数是2。

反比例函数:函数y=k/x(k为常数,x不等于0)叫做反比例函数,其中k叫做比例系数,x是自变量,y是函数值自变量x的取值范围是不等于0的一切实数。

三角函数:正弦函数=对边/斜边正切函数=对边/邻边余弦函数=邻边/斜边

初中数学差怎么补救

1.课前预习。课前先看看书,看你能够理解多少,尤其是有些涉及到前面的知识,如果不懂就可以叫老师协助。

2.课中认真。认真有两个层面:

(1)认真聆听老师的讲解,弄清楚前面预习时不懂之处;

(2)利用课堂练习检验自己是否弄明白了,尤其要关注做得不对的地方,把它圈起来,弄明白为什么错。

3.课后巩固。

(1)说课讲课,说说今天学习的内容并进行梳理;再次回顾做错的地方;

(2)着眼基础进行练习,适当多点以达到巩固的目的。

(3)着眼提高适当进行少量的较难的练习,促进自己的灵活运用能力。

高三数学函数知识点

八年级数学函数知识点

五年级下册数学期末复习题

高考数学函数解答方法

大班数学“二次分类”的说课稿

数学七年级字母表示数复习题

小学数学毕业综合模拟复习题

关于幂函数的教学反思

高三物理第二轮复习电场能复习题

高三数学教学计划

《高三数学幂函数与二次函数的复习题.docx》
将本文的Word文档下载,方便收藏和打印
推荐度:
高三数学幂函数与二次函数的复习题
点击下载文档

最新文章

相关内容

分类

关闭