《解决实际问题练习课》教学反思
【导语】“caisagong”通过精心收集,向本站投稿了18篇《解决实际问题练习课》教学反思,以下是小编收集整理后的《解决实际问题练习课》教学反思,仅供参考,欢迎大家阅读。
- 目录
- 第1篇:《解决实际问题练习课》教学反思第2篇:《列方程解决实际问题练习课》教学反思第3篇:《列方程解决实际问题练习》的教学反思第4篇:《解决实际问题复习课》数学教学反思第5篇:连乘解决实际问题教学反思第6篇:连乘解决实际问题教学反思第7篇:《列方程解决实际问题》教学反思第8篇: 《列方程解决实际问题》教学反思第9篇: 《列方程解决实际问题》教学反思第10篇:《列方程解决简单实际问题》教学反思第11篇:《列方程解决实际问题》教学反思第12篇:《列方程解决实际问题》教学反思第13篇:列方程解决实际问题教学反思第14篇:《列方程解决实际问题》教学反思第15篇:《列方程解决实际问题》教学反思第16篇:《列方程解决实际问题》教学反思第17篇:《列方程解决实际问题》教学反思第18篇:《列方程解决实际问题》教学反思
篇1:《解决实际问题练习课》教学反思
《解决实际问题练习课》教学反思
似乎也没有刻意地加快进度,却在不知不觉间,感觉课本越来越薄。于是我们组内商量着,最近不进行新课了,适当再增加些练习课。
今天,继续进行解决实际问题的练习,主要以创编题为主。
其实补充一节练习课,是一件头疼的事,至少我一直这么认为。因为要经历一番挑选适合的习题的过程,往往,我会没有了方向!
需要时才觉得有多可贵!这话一点不假。“海教在线”这一资源平台,平时也会经常去浏览并上传各类资料,但很少直接去复制着借鉴,昨天我试图为孩子们寻找一些有价值的习题,正巧“海教在线”的窗口开着,于是不假思索地点击了“解决实际问题”的帖子,在仔细浏览了几遍后,发觉还真是满载而归。一会儿时间我便收集到了6道令我满意的习题,然后我又增加了一些创编题,这下,课堂上的资源显然丰富了许多。看来,孤军奋战确实不是明智之举!
练习在孩子的学习中起着不可替代的.作用,但只注重习题的类型,而忽略孩子们的思维训练,也会造成孩子思路的闭塞。所以在选择创编题时,最根本的,我还是以孩子昨天作业中出现差错多的习题入手,进行一些小改动,尽可能使这道题呈现的形式有所变化,这样可以避免模式化的偏向和思维的僵化。我个人的想法是:改变条件和问题的搭配、补充条件或问题、变换叙述的方式等手段均可以让孩子们从习题中得到不一样的体验与收获。
另外,我还尝试了让孩子们自己设计两步计算的实际问题,让他们自己联系生活实际创编习题,我的初衷是,让孩子们在经历创编的过程中,不断生成分析、综合和自我评价的能力。这项作业,我允许他们放在课后完成,目的是默许一些相对能力差的孩子在遇到困难后,能得到同伴或家长的帮助。
和前一堂课相比较,我感觉孩子们对于解决两步计算的实际问题,熟练了许多。他们不再盲目地去收集条件,愿意静下心来默读、观察题目,然后再进行收集、整理信息,或许这只是孩子们迈出的第一步,却也是进步的标志。
篇2:《列方程解决实际问题练习课》教学反思
列方程解实际问题,与学生在这之前所采用的列算式解决实际问题,它们的共同点是,都以四则运算和常见数量关系为基础,都需要分析数量关系。它们的区别主要是思考方法不同。列方程解实际问题时,未知数能以一个字母为代表和已知数一起参加列式运算,解决了列算式解决实际问题中的局限性较大的缺点。如:“已知一个数的几倍多(或少)几是多少求这个数”的应用题,与其相应的顺向思考的应用题,即求比一个数的几倍多(或少)几是多少。此类应用题若用算术方法解,需逆向思考,思维难度大,学生容易出现先除后减的错误。用方程解,思路是顺向的,体现了列方程解应用题的优越性。可见学好列方程对于学生具有重要意义。
列方程解决实际问题的难点是:根据实际问题找出等量关系式,再列出方程。但是有些理解能力较弱的学生不知道怎样来找等量关系式。所以我在设计练习课的`时候,我先教会学生找出题目中等量关系式方法。我要学生小结出平时做的练习题中经常会出现的一些等量关系,如下:
1、根据常用的数量关系确定等量关系。
例如:甲乙两地相距1820千米,汽车每小时行130千米,求汽车从甲地到乙地需要多少小时?
等量关系式:速度×时间=路程。由此可以列出方程:
解:设汽车从甲地到乙地需要X小时。
X×130=1820
X×130÷13=1820÷130
X=14
答:汽车从甲地到乙地需要14小时。
2、根据几何公式确定等量关系。
例如:长方形的面积是11.2平方米,长是5.6米,它的宽是多少米?
等量关系式:长×宽=长方形的面积,根据这个公式列出方程。
解:设长方形的高是X米。
5.6X=11.2
5.6X÷5.6=11.2÷5.6
X=2
答:长方形的宽是2米。
根据题目中有比较意义的关键句确定等量关系。
类似于这样的找等量关系的题目,是同学错的最多的题目,我让学生分两步做:
第一,找出题目中有比较意义的关键句;
第二,按照关键句中,文字表述的顺序列出等量关系式。
例1:钢琴的黑键有36个,比白键少16个,白键有多少个?
第一,找出有比较意义的关键句“比白键少16个”,第二,按照关键句中文字描述的顺序,“比白键少”,“ 少”就是“减”,用“白键的个数-16个=黑键的个数”,再根据等量关系式列出方程。
解:设白键有x个。
x-16=36
x-16+16=36+16
x=52
答:白键有52个。
例2:一只大象的体重是6吨,正好是一头牛体重的15倍。一头牛的体重是多少吨?
第一,找出找出有比较意义关键句,“正好是一头牛体重的15倍”,第二,按照关键句中文字描述的顺序,“是一头牛体重的15倍”,看到“……的几倍”,应该用乘法,“一头牛体重×15=一只大象的体重”, 再根据等量关系式列出方程。
解:设一头牛的体重是X吨。
15X=6
15X÷15=6÷15
X=0.4
答:一头牛的体重是0.4吨。
总之,列方程解实际问题只要找出数量间的相等关系,再列方程就可以了。等量关系式变化很多,因此方法较多,从不同的角度找出不同的数量关系式,可以列出不同的方程。在教学中和孩子们共同总结出列方程解决问题四步曲:一是审题,想数量关系式;二是写解和设句;三是列解方程;四是检验写答。同时反复训练学生的直觉思维,让学生在学习、辨析、交流与反馈表达中思维不断开阔,从中感受到学习的乐趣,增强学习数学的信心。
篇3:《列方程解决实际问题练习》的教学反思
《列方程解决实际问题(2)练习》的教学反思
这是一节练习课,我在课的第二部分:列方程解决实际问题作了调整,把相遇问题、追及问题作为本课的重点,其余9、10、11题只在课堂上练了一道,其余两道作为课堂作业。行程问题中相遇问题学生数量关系比较熟悉,学习比较顺利。而我补充的追及问题,学生很生疏,我画线段图给他们看,引导他们说数量关系,他们还是有些茫然,好像结论数量间的相等关系,是我强塞给他们的,而不是他们自己发现的。我后悔不及,应该先请学生演示追的过程,再让他们自己画图,这样肯定弄得明白了。作为弥补,我再请学生演示追的过程,再次引导说数量间的相等关系。总算勉强通过。
本节课重点是列方程解决实际问题,我重视数量关系的分析,重视列方程解答问题的步骤的训练,学生能够有序思考、有条理地解决问题。但,可能是我一贯的作风节奏慢,我总是要到中下学生心领神会了,我才放心地进入下一环节;也可能是我与这些学生的磨合期还没过,怎样听别人讲、怎样回答问题、怎样讨论,也成了我常说的`问题。所以,我常完不成一节课的预定任务,课堂作业常带到课外完成。这个问题我要尽量克服。
想起这节课对追及问题的处理,其实增添这个内容是因为看到《补充习题》上有这类问题,课上不提出来,学生课后解决有困难。转念一想,我在做了一个追及问题之后,最好接着练习一个同类型的问题,这样这个新知识才会学得扎实。
这节课,一个突出的问题:我对追及问题的认识不足,处理不够恰当。究其原因,因为我没有正确把握学情,我不知道学生对这类问题很生疏。我这个一直教老教材的教师,新教材体系我要好好熟悉,学生原有的学习情况,我要及时地了解。
篇4:《解决实际问题复习课》数学教学反思
《解决实际问题复习课》数学教学反思
本课还是关于解决实际问题的复习。
我总有一个想法,解决实际问题是最容易考察出学生实际能力的一个项目。非常遗憾的是,有许多学生在解决实际问题上面最容易犯迷糊。一是读不懂题目的意思,二是在许多细节方面非常的不注意。从一年级开始,解决实际问题就是与情境图相融合在一起的,是情境问题。
在课堂上,我致力于几点,
一是让学生抓住情境图中的'信息。
例如解决实际问题第5题,我先让学生说说从图上你知道了什么?学生们一看就知道,这是一个泳池,泳池的长度是50米。也就是说,从泳池的一头游到另外一头要游50米。情境图中的信息也是解决实际问题中不可缺少的一部分。
二是联系实际生活来理解。
如第6题:小华中午不回家,在学校吃饭;小芸中午回家吃饭。每天上学和回家,谁走得路多些?先估一估,再算一算。
本题理解的难点在小华和小芸走这这段路几次。尤其是小芸,许多学生就算不清楚了。我找了一个中午回家吃饭的学生。又找了一个在校用餐的学生。让孩子们分别算一算他们路上要走几次。结果,很容易地就算出来小华一天要走这条路两次。而小芸要走4次。这样题目也就顺利解决了。
篇5:连乘解决实际问题教学反思
新教材的特点是情景图比较多,颜色鲜艳、生动活泼,很能吸引学生的眼球,但我发现。在三年级上册第一单元连乘和连除解决问题中,往往有一些条件隐藏在情景图中,往往学生也被图给迷惑,出现了一些学生不去审题,只拿出文字中的条件去计算。连乘和连除应用题他们当一步应用题来解决。于是我在教学中不是引着学生逐字逐句分析并解答应用题的,取而代之的是学生自主的探究和合作交流,“你自己试一试,然后小组讨论,你教一教不会的同学。”学生的思维和方法得到了充分的展示。连乘应用题出现了几种不同的方法,而且学生普遍能讲出道理来,学生真正成为学习的主人,积极的参与教学的每一个环节,努力的探索解决问题的方法,大胆的发表自己的观点。在课堂上以小组活动为主体,创造了一种和谐的、民主和学习氛围。每个问题的提出,先是由学生独立思考,再到两人商讨,然后小组交流,把时空有限的课堂变为人人参与、个个思考的无限空间。
教师不再是一个简单的知识传授者,而是一个成功的组织者和引导者、设计者。面对学生对数学不感兴趣,感到数学枯燥无味、抽象难学的现状。变“简单的求钢笔的价钱”为解决“学生身边的体育用品”中的实际问题,教学内容贴近学生生活,为学生喜闻乐见,调动了学生学习积极性。教学过程中,教师通过扶——半扶半放——放,师生交流,生生交流。使全体学生都有所得。
解决问题教学理当重视数量关系的分析与解题思路的梳理。本节课在分析应用题时,让学生从情景中发现问题、提出问题并解决问题。提出问题和解决问题的过程是学生思维的过程,教师在课堂上给学生留有充足的时间和空间,让学生去议论、去争辩、去探索。例如:如何购买钢笔等。这样教学不仅使学生的主体地位得到了充分的体现,也使学生的创新思维得到的发展。
篇6:连乘解决实际问题教学反思
1.本节课我以数学与生活的密切联系为出发点,让学生充分感受数学从生活中来,生活中处处有数学。所以整堂课,我始终贯穿着阳光小学举行体育运动会这一主线,这样更能激发学生学习数学的兴趣,使学生产生亲切感,利于加深学生对数学问题的基本含义的理解。
2.加强小组合作,有意识地培养学生提取信息,处理信息的能力。在教学中我让学生从问题入手,找出需要的数学信息,然后进行独立思考再小组探究,从而培养学生发现问题、提出问题的能力。通过说说算式表示的实际意义,先求什么?再求什么?再配合课件动态演示每种方法的每个步骤,从而让学生在说算式的意义、说思路、分析数量关系的过程中进一步掌握分析问题、解决问题的策略和方法,培养了学生从多角度观察问题、解决问题的能力。因此我本节课中我觉得学生在分析数量关系,清晰地理清解题思路及用不同的解决办法方面掌握得比较好。
3.本节课中在教授知识的同时,我也注重了学生学习习惯的培养,例如:独立思考问题的习惯——在交流之前,我都会安排学生独立思考的时间;有序思考的习惯——在交流时,说说你先求什么?再求什么?让学生掌握用乘法两步计算解决问题的基本思路;认真倾听的习惯——在别人回答问题时,认真听,这样才会发现问题,提出不同的见解。
4.由于我本人对课堂的驾驭能力不是很强,课堂中也存在许多不足之处。我觉得自己的语言不够精练,不时过于罗嗦。学生能说的问题,我总生怕他们不会,而“扶”得太多,没做到“扶放结合”,有时还没做到关注全体;课堂上我给学生的激励语言还是比较少,该表扬时又忘了,没能调动学生的.情绪,这是我今后需要加倍努力的地方。
5.本节课我基本上是上得比较扎实,学生也有些所获,如果再让我重新上这节课,在学生解答出第一种方法后,我会让寻求到第二或第三种方法的学生自己上台来向大家展示自己的思路,让他们有个互相学习的机会,也更能加深理解解题方法,同时还要提高自己课堂的驾奴能力。
篇7:《列方程解决实际问题》教学反思
《列方程解决简单实际问题》教学反思列方程解决简单实际问题,是在四年级下册初步认识方程,会用等式的性质解一步计算的简单方程的基础上进行教学的。是一种解决逆思维的解题方法。本周教研活动我们四年级组内听刘淑萍老师的课,对刘老师的课堂给予很高的评价,
一赞刘老师课堂敢于放手,把主动权教给学生;
二赞小组合作交流分工明确,真实高效;
三赞刘老师平时注重习惯的培养。课后评课我们都羡慕这样的课堂,都迫不及待的让刘老师传经送宝,之后我也在课堂上采用同样的方式进行教学。通过我的教学实践,和刘老师的课堂进行对比,反思自己的课堂还要抓好以下几个方面的问题:
一、重视等量关系式分析训练解决实际问题首先要引导学生分析题目的条件和问题,找出题目中等量关系,然后列出方程,解答问题。接着通过练习和思考,学生就会很快掌握类似这样的的实际问题。因此学生学会抓住等量关系来分析与思考,就能很快提高解题能力。
二、重视学生的语言训练。在解决问题时刘老师采用以三人小组交流的方式分析解决问题。如:1号同学讲,2号、3号听;或是3号、1号分析题意,2号书写等,分工合作,共同完成。小组内交流人人参与,人人思考,人人表达,因此刘老师的课就是思维的课堂,知识的火花在交流中碰撞、升华。同时小组交流的一大好处就是带动后进生,带动跑神的学生,让他参与到课堂中,带动他们一起进步!与刘老师的课堂相比,我需要加强学生的语言表达能力,就像刘老师所说,刚开始不能急,要慢节奏,教给孩子怎样说,怎样小组交流,正如磨刀不误砍柴工,练上一个月,一个学期,你就会有不一样的收获。
三、重视学生解决问题思路训练回顾列方程解决实际问题的整个过程,刘老师让学生总结出了七步:读(读清题意)--找(找数量关系式)——解设(未知数x)——列(列方程)——解(解方程)——检(口答检验)--答(写答案)。方法的引领比获得的知识更重要,告诉学生以后碰到类似的问题如何解决。教学中刘老师一节课教学内容我用了两节课时间训练让学生在学习、辨析、交流与反馈表达中不断开阔思维,从中感受到小组学习的乐趣,增强学习数学的信心,学习效果很好,初步达到了预期的目的。课堂属于学生,课堂的精彩不在于老师多么优秀,在于学生的出彩,在以后的教学中,我要慢慢践行放手小组合作交流学习,给学生更多的思考时间,更大的展示空间,让我的数学课堂更有魅力。
篇8: 《列方程解决实际问题》教学反思
本课是在学生认识了方程,学会解只含有一步计算的方程的基础上,运用等量关系列方程解决简单的实际问题。列方程解决实际问题既是解决问题的一种策略,又是十分重要的数学思想方法,对以后的数学乃至其他一些学科的学习发挥着基础作用。例题本身是一道需要逆向思考的减法实际问题,教材也比较完整的呈现了列方程解决这个实际问题的步骤,其中解方程的过程留给学生去完成。教学时引导学生列出不同的方程解决问题,让学生感受列方程方法的多样性。
我认为本课的关键是教会学生会根据题意找出数量关系,并列出相应的方程。因此要做到:
1、现在学生相对的分析说明能力比较薄弱,针对这一点,我让学生多观察以及及时的分析说明,可以培养学生的观察能力、理解能力及分析能力。
2、等量关系的寻找对于列方程解决实际问题是很重要的,针对它的重要性,我相机渗透了一些简单的寻找等量关系的方法,并要求学生每一题都要说一说数量关系。既加深了学生对于学习方程时对数量关系的重视,也在间接的培养学生的解题能力。
3、列方程解决实际问题是学生第一次接触,一般的步骤是必须要遵守的,老师可以让学生模仿老师的书写格式,虽然是模仿,但也算是有接受的学习,一方面让学生自主探索,一方面也让学生有计划的记忆。在解题以及展示过程的过程中,尽量让学生多说,要让学生充分发挥主动性,真正发挥学习的主体作用。
4、强调了算术方法与方程的区分。通过例题与试一试的练习,让学生发现每道题实际上都可以找出三个数量关系,根据这三个等量关系式,可以列出三个方程,但是,其中有一种方程是x单独在“=”的左边或者单独在“=”的右边,这种情形要避免,因为,这种列方程实际上是在用算术方法解题,而不是方程的方法,这样就和算术解法差不多了,方程也就失去了它的意义。
关于《列方程解决简单实际问题》的教学反思
列方程解决简单实际问题,是在五年级(下册)初步认识方程,会用等式的性质解一步计算的简单方程的基础上进行教学的。是新课标教材中使用比较多的一种解决逆思维的实际问题的解题方法,它改变了以往解决逆思维题目用算术方法解答而学生很难理解的困惑,它符合学生的认知规律和知识基础。通过我的教学实践,我觉得学生在学习这个单元的过程中,还要注意以下几个方面的问题:
一、重视关键句分析训练,提高学生的分析能力。
解决实际问题首先要引导学生分析题目的条件和问题,找出题目中的关键句,根据关键句找出题目中直接的相等关系,这样可以便于学生列出方程,解答问题。接着通过练习和思考,学生就会很快掌握类似这样的的实际问题。因此学生如果学会抓住关键句来分析与思考,能很快提高解题能力。
二、重视学生的语言训练,提高学生的表达能力。
在分析关键句的同时,我们要通过找出关键句、用语言分析关键句,提高学生的思维能力,例如:在“爸爸的年龄是小红的4倍,爸爸比小红大24岁。爸爸和小红的年龄各是多少?”这一题中,先让学生说说单位“1”的量以及怎样设。再根据哪一句可以找出数量间的相等关系。我在教学中采用小组交流相互补充和提高,多次通过语言表达训练学生分析关键句、列出相等关系的口头表达能力,让学生在学习的过程中掌握探究知识的方法。
篇9: 《列方程解决实际问题》教学反思
列方程解决简单实际问题,是在五年级(上册)初步认识方程,会用等式的性质解一步计算的简单方程的基础上进行教学的。是一种解决逆思维的解题方法。通过我的教学实践,我觉得学生在学习这个单元的过程中,还要抓好以下几个方面的问题:
一.重视标准量分析训练。
解决实际问题首先要引导学生分析题目的条件和问题,找出题目中的标准量,根据标准量找出题目中直接的等量关系,然后列出方程,解答问题。接着通过练习和思考,学生就会很快掌握类似这样的的实际问题。因此学生学会抓住标准量来分析与思考,就能很快提高解题能力。
二.重视学生的语言训练。
在分析标准量的同时,我们要通过找出标准量、用语言分析标准量,提高学生的思维能力,例如:在“妈妈的年龄是桐桐的4倍,妈妈比桐桐大24岁。妈妈和桐桐的年龄各是多少?”这一题中,我先让学生说单位“1”的量(即标准量)以及怎样设。再找出数量间的相等关系。学生在小组交流相互补充,多次通过语言表达训练,学生分析标准量、列出相等关系的口头表达能力也提高了,也掌握了探究知识的方法。
三.重视学生的综合训练。
在学生学会找准标准量、分析标准量的基础上,还要结合学生的掌握情况进行基础性、综合性等训练。在教学中我多次通过训练学生的基础表达拓展到解决实际问题的能力上来,学生学的轻松、愉快、有效。如通过基础训练:苹果是香蕉的1.5倍,如果香蕉是x千克,那么苹果和香蕉一共有xx千克,苹果比香蕉多xx千克,香蕉比苹果少xx千克……,类似这样的题目,让学生弄清每一个式子所表示的意义,经过一段时间的训练,学生对这样的实际问题解决时就能熟能生巧。不仅如此,还通过适当的变式题目,训练学生的综合思维,提高学生的解题难度,促进学生的思维不断得到提高。
最后跟孩子们一起回顾列方程解决实际问题的整个过程,并总结出了六步曲:找数量关系式——解设——列方程——解方程——写答语——检验。教学中我反复训练,让学生在学习、辨析、交流与反馈表达中不断开阔思维,从中感受到学习的乐趣,增强学习数学的信心,学习效果很好,达到了预期的目的。
篇10:《列方程解决简单实际问题》教学反思
列方程解决简单实际问题,是新课标教材中使用比较多的一种解决逆思维的实际问题的解题方法,它改变了以往解决逆思维题目用算术方法解答而学生很难理解的困惑,它符合学生的认知规律和知识基础。在列方程解决简单实际问题的过程中,我注重以学生认知发展水平为基础,使学生愉快的投入到现实的、探索性的活动中去。
一.以学生的思维特点确定等量关系式
解决实际问题首先引导学生审题,识别哪些信息是解决问题所需求的,找出题目中的关键句,然后以学生的思维特点确定等量关系式,这样可以便于学生列出方程,解答问题。如:课本例1,让学生先读题,找出关键句:“白色皮的块数比黑色皮的2倍少4块”,根据这句话学生的思维直觉直接写出这样的等量关系:“白色皮的块数=黑色皮的块数×2-4”。对于例题中用到的等量关系式,在我的点拨下学生才想出来,在做练习题中我也发现,类似这样的“一个数比另一个数的几倍多几(或少几)”的实际问题,学生就会根据自己的理解和直觉思考用“一个数=另一个数×倍数±几”这种等量关系,看来这种等量关系式适合学生的认知发展水平。
我的困惑:当一题多解时,教材如果只呈现一种解法时,这种方法往往是其中最简洁、最容易理解、更值得推荐的方法。可这一课为何会采用“黑色皮的块数×2―白色皮的块数=4”呢?难道这个关系式比其它两种更好理解吗?
二.以套用模式列方程解决简单实际问题
学生在解决稍复杂的方程时,虽然能理解实际问题中有关和、差、倍的数量关系,但不能正确列出方程,例如:课本练习十三中的'第8题:妈妈今年的年龄是小明的3倍,妈妈比小明大24岁,小明和妈妈今年分别是多少岁?题中既有比多少的信息,又有倍数的信息,学生不知设哪个为X,另一个又怎样表示,但此题如果找到的数量关系是“小明的年龄+24=妈妈的年龄”,但列出来的方程X+24=3X等式两边都有X,学生解方程就会有困难。针对这种情况,我先让学生找“倍数”的信息 ,让学生说说谁是1倍量,设1倍量为X,另一个量是几倍的量就是几x表示。再根据“比多少”的信息找出等量关系式,列出方程,学生套用这种模式后,解决关于“和倍”、“差倍”的问题,基本没有出错的,从而提高了学生做题的正确率。
在教学中,富有启发性的、促进学生理解的讲授法并无什么不妥,而超越学生实际的、缺乏逻辑意义的发问恐怕也是行不通的。教学有法,教无定法,贵在得法,为了提高课堂教学效率,我们还要从学生的实际出发,以学法带动教法。
篇11:《列方程解决实际问题》教学反思
本课的教学内容是一个数(已知)是另一个数的几倍多(或少)几,求另一个数。教学注重的是解决问题的过程,也就是要让学生经历寻找实际问题中数量关系并列方程解答的全过程。让学生明确正确找出题中的等量关系是最为关键的。通过学习,增强学生用方程解决实际问题的意识和能力,进一步丰富解决问题的策略,帮助学生加深理解方程是一种重要的数学思想方法。
反思这一节课,做得好的方面是:一是从学生的认知水平出发,循序渐进,通过“句――式――方程”的思维过程,让学生感受方程解题的基本方法:即找到了等量关系,方程就自然而然,水到渠成了。 二是练习形式多样,练习有层次。由简到难,有坡度,但目的只有一样,就是让学生通过这些练习能很快找到等量关系,正确列出方程。
不足的方面是:练习的重点在于找准数量关系式。课堂上大量提问了学生应用题的数量关系式是什么,并进行了专项训练,但在进行列方程解应用题时,只满足了让学生说出数量关系式是什么,应该让中下学生再再说说关键句是什么,是根据哪句话找出来的,分析题时可先用铅笔画出来,分清已知量和未知量,用相应的未知数和具体数字表示出来,转化成等式,从而把实际问题转化成数学问题,再利用已有知识解决问题。
篇12:《列方程解决实际问题》教学反思
列方程解决实际问题,是新课标教材中使用比较多的一种解决逆思维的实际问题的`解题方法,它改变了以往解决逆思维题目用算术方法解答而学生很难理解的困惑,它符合学生的认知规律和知识基础,易于学生运用知识的正迁移、结合思维方法正确解决此类的实际问题,学生学得轻松、灵活、有效,很好地提高了课堂教学的效率。
六年级数学(上册)的第一单元就是在学生五年级学过的解方程的基础上进一步学习《用方程解决实际问题》,通过我的教学实践和教学反思,我觉得学生在学习这个单元的过程中,教师还要着重注意以下几个方面的问题:
一.重视关键句分析训练,提高学生的分析能力。
解决实际问题首先要引导学生分析题目的条件和问题,找出题目中的关键句,根据关键句找出题目中的直接的相等关系,这样可以便于学生列出方程,解答问题。如:例1中的关键句:“大雁塔的高度比小雁塔高度的2倍少22米”,根据这句话学生的思维就会直觉的写出这样的相等关系:“大雁塔的高度=小雁塔的高度×2-22”。如果小雁塔的高度不知道就可以直接写出方程,这样问题就很快解答了;通过学习和思考,学生就会很快掌握类似这样的“一个数比另一个数的几倍多几(或少几)”的实际问题,学生就会根据自己的理解和直觉思考用“一个数=另一个数×倍数±几”这种相等关系,如果另一个数是1倍数不知道,可以用方程直接解答。因此学生如果学会抓住关键句分析与思考,能很快提高我们的课堂教学的效率,提高学生的解题能力,对学生的直觉顿悟思维有很大的促进作用。
二.重视学生的语言训练,提高学生的表达能力。
在分析关键句的同时,我们不能仅仅局限于会解答实际问题的层面上,要通过找出关键句、用语言分析关键句,提高学生的思维能力,让学生在学习的过程中关注他们探究知识的方法和过程,理解学生的思维方法,通过交流与学习相互补充和提高。因此,在教学这部分知识的同时,我多次通过语言表达训练学生分析关键句、列出相等关系的口头表达能力。
在教学例2时我通过出示学生熟悉的生活素材:六(1)班有学生48人,男生是女生人数的1。4倍。让学生独立思考和讨论找出题目中的相等关系,学生根据全班48人,知道用“男生人数+女生人数=全班人数”的相等关系,再结合“男生是女生人数的1。4倍。”把题目中的女生人数看做1倍数,那么男生人数就是1。4倍数,如果用x表示女生人数,那么男生人数就是1。4x,这样方程就很快列出来:1。4x+x=48;
如果把第一个条件改成“合唱组男生比女生多48人。”又如何解决呢?让学生自己讨论和交流,自己解答。学生根据刚才的学习体会,很快找到解决的方法。
通过学生的分析、交流与语言反馈表达,不仅提高了学生的表达能力,更主要的体现了学生的主体性,让学生在相互学习和交流中进行学习上的互补,同时也很好地发挥了教师的主导作用,通过学生之间的互帮互学,在交流中可以促进学生直觉顿悟思维的有效组织与思考,便于学生很好的组织自己的语言,理清自己的思维,长期训练,对学生的思维能力有很大的提高。
三.重视学生的综合训练,提高学生的整体思维。
在学生学会找准关键句、分析关键句的基础上,通过教学我觉得还要结合学生的掌握情况,进行基础性、综合性等训练,使学生的直觉顿悟思维等有层次、有条理得到训练与提高。
在教学中我多次通过训练学生的基础表达拓展到解决实际问题的能力上来,学生学的轻松、愉快、有效。如通过基础训练:苹果是梨的2。5倍,如果梨是x 千克,那么苹果和梨一共有x千克,苹果比梨多x千克,梨比苹果少x千克……,类似这样的题目,长期用短时间训练学生的表达能力,学生对这样的实际问题解决时就能熟能生巧。不仅如此,还要通过适当的变式题目,训练学生的综合思维,适当提高学生的解题难度,促进学生的思维不断得到提高,如我在教学中把“合唱组人数是美术组人数的3倍,合唱组人数比美术组多12人。”这样基础题目通过改编成以下的题目:“合唱组人数是美术组人数的3倍,如果从合唱组调6人到美术组,则两个小组的人数同样多。”让学生比较、交流与思考,通过比较和思考发现题目的差别,找出题目中两组人数差的共同点,找到解题的共同处,对学生直觉顿悟思维有很好的帮助和提高。
教学中我多次通过训练学生的直觉思维,让学生在学习、辨析、交流与反馈表达中使学生的思维在顿悟中豁然开朗,从中感受到学习的乐趣,增强学习数学的信心,通过本单元的教学和反思,学生的解题能力和思维能力通过训练和培养得到了有效的提高,促进了教与学的共同提高。
篇13:列方程解决实际问题教学反思
列方程解决实际问题教学反思
本节课是学生初次利用列方程来解决实际问题,应首先从例题上引导学生观察,从而发现例题与之前所学的方程有所不同,之前列方程时题目中未知数x已经有了,直接看出x表示那个量,而例题中并没有x,从而引导学生了解到,要列方程必须把其中的未知量假设为x,从实际中让学生发现列方程解决问题时有“设……为x…”的必要,不至于出现在列方程时不写“解:设……”的情况。
另外教材只要求掌握“未知数不是减数和除数的方程”的解法,在练习时,如:练一练第1 小题,学生中很多人列出了这样的方程:36-x=2.5,方程列的是没有任何问题的,但是应该怎么解呢?是否该向学生讲解方法?还是让学生把此方程改成教材要求的那样的方程?如果要改成教材要求的方程,那就是在向学生传达这样的思想:这样的`列法是不被认可的,那么以后在学习“未知数是减数和除数的方程” 时,学生的思维那不就和现在冲突了吗?希望有人能解释!如果需要向学生讲解,那该怎么讲解?讲解到什么程度?而且类似的问题在其后的练习中不断的出现,困惑中!!!
篇14:《列方程解决实际问题》教学反思
《列方程解决实际问题》教学反思
虽然是第四年教学列方程解决实际问题,但教完第一课时仍觉迷惘,想想我对本单元的认识真是非常功利,认为本单元只要让学生学会两点,
一、会解形如ax±b=c、ax÷b=c、ax±bx=c的方程;
二、列方程解答两、三步计算的实际问题。
总之,一切以“解”为出发点,注重的是解决问题的结果。经过学习,我知道其实更深意义的教学应当另有所求:即以“学解”为出发点,注重的是解决问题的过程,也就是要让学生经历寻找实际问题中数量关系并列方程解答的全过程。这一单元的价值在通过学习,增强学生用方程解决实际问题的意识和能力,进一步丰富解决问题的策略,帮助学生加深理解方程是一种重要的数学思想方法。
回顾我第一课时的'教学,成功之处在于较好地培养了学生的思维。首先我设置了这样一个导入题:西安小雁塔高43米,(师述:大概14、15层楼高)而大雁塔的高度是它的2倍少22米,大雁塔有多高?然后由导入题引出关键句,标准量,数量关系式三个名词概念(为将来的学习作一铺垫)。再将导入题与例1进行比较异同,在对比中明确例1为什么要用方程来解比较合宜,从而体现了用方程解作为一种顺思维它存在的价值,让学生较轻松的构建方程模型。
失败之一:
由于高估了学生的已有能力,解方程过程教学过于放松,没有强调书写规范,更甚者对4X=36÷4这样的错误没有预见,以致于课堂作业很不中看,不过这些问题课后用十分钟和同学们讨论,同学们都能认识到错误,顺利过关。然而,追求尽善尽美的我们还是应当引以为戒。
失败之二:
没给出点时间让学生探寻其他解法。其实我私自认为将这一过程放在第一课时,有点难为我的学生。我应当先给他们建一个完整的方程模型,然后再是模型之上的升华。
我准备在下一课时会补上这一环节。庆幸矣,我能及时领悟到列方程解决实际问题的教学精髓,下面的教学,该是我想方设法来实践了。
篇15:《列方程解决实际问题》教学反思
虽然是第四年教学列方程解决实际问题,但教完第一课时仍觉迷惘,想想我对本单元的认识真是非常功利,认为本单元只要让学生学会两点,
一、会解形如ax±b=c、ax÷b=c、ax±bx=c的方程;
二、列方程解答两、三步计算的实际问题。
总之,一切以“解”为出发点,注重的是解决问题的结果。经过学习,我知道其实更深意义的教学应当另有所求:即以“学解”为出发点,注重的是解决问题的过程,也就是要让学生经历寻找实际问题中数量关系并列方程解答的全过程。这一单元的价值在通过学习,增强学生用方程解决实际问题的意识和能力,进一步丰富解决问题的策略,帮助学生加深理解方程是一种重要的数学思想方法。
回顾我第一课时的教学,成功之处在于较好地培养了学生的思维。首先我设置了这样一个导入题:西安小雁塔高43米,(师述:大概14、15层楼高)而大雁塔的高度是它的2倍少22米,大雁塔有多高?然后由导入题引出关键句,标准量,数量关系式三个名词概念(为将来的学习作一铺垫)。再将导入题与例1进行比较异同,在对比中明确例1为什么要用方程来解比较合宜,从而体现了用方程解作为一种顺思维它存在的价值,让学生较轻松的构建方程模型。
失败之一:
由于高估了学生的已有能力,解方程过程教学过于放松,没有强调书写规范,更甚者对4X=36÷4这样的错误没有预见,以致于课堂作业很不中看,不过这些问题课后用十分钟和同学们讨论,同学们都能认识到错误,顺利过关。然而,追求尽善尽美的`我们还是应当引以为戒。
失败之二:
没给出点时间让学生探寻其他解法。其实我私自认为将这一过程放在第一课时,有点难为我的学生。我应当先给他们建一个完整的方程模型,然后再是模型之上的升华。
我准备在下一课时会补上这一环节。庆幸矣,我能及时领悟到列方程解决实际问题的教学精髓,下面的教学,该是我想方设法来实践了。
篇16:《列方程解决实际问题》教学反思
今天学习了《列方程解决实际问题》,学生经历列方程解决一步计算的实际问题的学习过程,在练习中学生对列方程解决实际问题的一般步骤和方法掌握不太好。
本节课我重视学生对数量关系的理解和列方程与数量关系的对应的方程。如:例7的数量关系:小军的成绩-小刚的成绩=0.06米,对应的方程是x-1.39=0.06,如果数量关系:小军的成绩-0.06米=小刚的成绩,对应的方程是x-0.06=1.39。
本节课学生设未知数x的后面单位名称会丢掉。在本节课教学中使用的数量关系,实际上就是以前的“…比…多…”和“…比…少…”应用题的数量关系,数量关系:大数-小数=差,大数-差=小数,差+小数=大数。
篇17:《列方程解决实际问题》教学反思
这是在讲解例题时分析陆地面积和水面面积之间的倍数关系的线段图。这看似简单的一幅图,却难住了我的学生。看到学生在座位上绞尽脑汁也画不出来,真是急啊!课后反思了一下,觉得有以下原因:
1、从小不重视
线段图是四年级才教的解决问题的,但是从一年级就已经有线段图的题目出现在小朋友的面前,此时就应该让我们的小朋友对线段图有所了解。不应该等到要用了才开始学,那已经来不及了。所以有些老师认为线段图是高年级老师的任务,殊不知在中低年级就应该着手培养了。
2、空间观念不强
空间关系同数量关系一样也是数学能力的基本内容,而且数和形是不可分开的。因此,学生掌握空间关系的知觉能力也是小学数学能力的重要组成部分。然而不少的数学教学方法,偏重于抽象逻辑思维的训练,造成了人的智力开发的残缺。当前许多教育整体改革实验,都提出使学生和谐发展,这都与充分开发脑功能有关。因此培养空间观念尤为重要了。
3、指导力度不够
教师的指导、示范、点拨是培养学生画图能力的关键。学生刚学习画线段图,不知道从那下手,如何去画。教师的指导、示范就尤为重要。首先,教师可以指导学生跟教师一步一步来画,找数量关系。也可以教师示范画出以后,让学生仿照重画一遍,即使是把老师画的图照抄一边,也是有收获的。其次,学生可边画边讲,或互相讲解。教师对有困难的学生一定要给以耐心的指导。最后,学生掌握了一定的技能后,教师可以放手让学生自己去画,教师给以适时的点拨,要注意让学生讲清这样画图的道理,可自己讲,也可分组合作讲。
篇18:《列方程解决实际问题》教学反思
列方程解决简单实际问题,是在五年级(上册)初步认识方程,会用等式的性质解一步计算的简单方程的基础上进行教学的。是一种解决逆思维的解题方法。通过我的教学实践,我觉得学生在学习这个单元的过程中,还要抓好以下几个方面的问题:
一.重视标准量分析训练。
解决实际问题首先要引导学生分析题目的条件和问题,找出题目中的标准量,根据标准量找出题目中直接的等量关系,然后列出方程,解答问题。接着通过练习和思考,学生就会很快掌握类似这样的的`实际问题。因此学生学会抓住标准量来分析与思考,就能很快提高解题能力。
二.重视学生的语言训练。
在分析标准量的同时,我们要通过找出标准量、用语言分析标准量,提高学生的思维能力,例如:在“妈妈的年龄是桐桐的4倍,妈妈比桐桐大24岁。妈妈和桐桐的年龄各是多少?”这一题中,我先让学生说单位“1”的量(即标准量)以及怎样设。再找出数量间的相等关系。学生在小组交流相互补充,多次通过语言表达训练,学生分析标准量、列出相等关系的口头表达能力也提高了,也掌握了探究知识的方法。
三.重视学生的综合训练。
在学生学会找准标准量、分析标准量的基础上,还要结合学生的掌握情况进行基础性、综合性等训练。在教学中我多次通过训练学生的基础表达拓展到解决实际问题的能力上来,学生学的轻松、愉快、有效。如通过基础训练:苹果是香蕉的1.5倍,如果香蕉是x千克,那么苹果和香蕉一共有()千克,苹果比香蕉多()千克,香蕉比苹果少()千克……,类似这样的题目,让学生弄清每一个式子所表示的意义,经过一段时间的训练,学生对这样的实际问题解决时就能熟能生巧。不仅如此,还通过适当的变式题目,训练学生的综合思维,提高学生的解题难度,促进学生的思维不断得到提高。
最后跟孩子们一起回顾列方程解决实际问题的整个过程,并总结出了六步曲:找数量关系式——解设——列方程——解方程——写答语——检验。教学中我反复训练,让学生在学习、辨析、交流与反馈表达中不断开阔思维,从中感受到学习的乐趣,增强学习数学的信心,学习效果很好,达到了预期的目的。
★ 练习课的教学方案
★ 练习5教学反思